
1

Orton NIBL computer with PAGE2 support

Manual

Index

Chapter 1 Overview.. 2
Chapter 2 Hardware expectations.. 3
Chapter 3 PAGE2 commands .. 4
Chapter 4 Assembler.. 8
Chapter 5 Hardware... 11
Chapter 6 Photo ... 15
Chapter 7 Software .. 16
Chapter 8 Example program .. 17

Disclaimer

The information in this document is provided purely as a record of the construction of one of my
computer projects. I provide no assurance or guarantee whatsoever as to the accuracy, safety or

originality of the contents of this document. I provide no warranty whatsoever as to the suitability for
any purpose of the contents of this document. I accept no responsibility whatsoever for any deaths,

injuries or losses resulting from the use of the information contained in this document. I have no
claims to most of the technology used in my projects or described in this document, indeed, it must be

assumed that I have used much copyrighted and/or patented material. But since I do what I do for
purely recreational, educational or personal instructional purposes, I do not believe that I am breaking
the law. It is up to the individual using the information in this document to determine whether, and to
ensure that, their use of the information I provide is both legal and safe. This is supposed to be fun.

Karen Orton 2020

2

Chapter 1 Overview

The computer described in this document was inspired by an SC/MP-based
computer that I built in the late 1970s. This computer ran National Semiconductor's
'National's Industrial BASIC Language' ('NIBL'), a 4k byte tiny BASIC intended to
ease application of the SC/MP to industrial control applications. There are several
distinctive features of this tiny BASIC:

1. NIBL programs are not tokenised when entered into
memory.

2. NIBL programs are not scanned for syntax compliance
during editing.

3. NIBL programs recognise the inherent paging of the SC/MP
microprocessor, leading to as many as seven independent
(but chainable) 4 k byte programs in memory.

4. NIBL is able to identify a ROM-based program ('Page 2')
and run this automatically at start up.

These observations inspired the development of a set of utility routines to
accompany NIBL. These work in such a way as to complement NIBL rather than
compete with it. For example, some of these routines take a NIBL page number as
their argument. This document describes the package ('PAGE2') and the commands
it supports.

3

Chapter 2 Hardware expectations

The PAGE2 system makes use of the SC/MP processor flags as follows:

Flag NIBL use PAGE2 use

F0 Console serial output
(inverted)

Same as NIBL

F1 Teletype reader relay General I/O indicator
LED

F2 (not used) Auxiliary serial output
(inverted)

SA (not used)
Auxiliary serial

hardware flow control
input (CTS)

SB Console serial input Same as NIBL

SIN (not used) FSK cassette replay
input

SOUT (not used) FSK cassette record
output

PAGE2 resides in ROM on Page 2. PAGE2 assumes a maximum of 24k bytes of
RAM (in Pages 1, 3, 4, 5, 6 and 7). Memory addresses #8000 and above are
available for system expansion. Console serial I/O is performed at 1200 Baud, 8 data
bits, no parity and one stop bit.

4

Chapter 3 PAGE2 commands

General

PAGE2 has eight commands as follows:

Command Arguments Function

NIB none Return to NIBL

DIR none Directory of pages

DMP <address> Dump memory

CHM <address> Change memory

SAV <page> Save page to cassette

LOD <page> Load page from cassette

PRN <page> Print page to auxiliary port

ASM <page> Assemble page

Note that commands are identified by the first three characters. Therefore, the 'NIB'
command could be entered as 'NIBL', 'SAV' as 'SAVE' etc. In PAGE2, all numeric
input follows NIBL convention: either decimal, or hexadecimal preceded by a hash
'#'.

NIB

This command causes a return to NIBL with the current page being 2. PAGE2 can
be re-entered by simply entering 'RUN' while on Page 2. On either change, the new
environment is identified ('PAGE2' or 'NIBL'). While in the PAGE2 environment, the
prompt is an asterisk '*'. The NIBL prompt is of course a greater than sign '>'.

DIR

The DIR command shows the first program line of Pages 1 to 7, if present. This
might assist in identifying loaded programs. A typical response to the DIR command
might be:

5

1: REM SYMTAB
2: REM PAGE2.SYS
3: FOR N=1 TO 10
4: REM SQUARE ROOT
5:
6:
7:

DMP <address>

The DMP command dumps the contents of memory in tabular form. The dump
begins from the address supplied, or the previous boundary consistent with the
number of bytes dumped per line. The contents are displayed as both hexadecimal
and ASCII characters, provided the latter correspond to printable ASCII characters.
A typical response to the DMP command is:

DMP #4002
4000 00 04 05 06
4004 30 31 32 33 0123
4008 00 00 00 00
400C 00 00 00 00
4010 00 00 00 00
4014 00 00 00 00
4018 00 00 00 00
401C 00 00 00 00
4020 00 00 00 00
4024 00 00 00 00
4028 00 00 00 00
402C 00 00 00 00
-

The final line shows a minus symbol '-'. This is the in-command PAGE2 prompt and
accepts the following inputs:

 Return alone: Dump next block

. Dot return: Exit DMP command

@<address> Dump from new address

CHM <address>

The CHM command allows editing of memory contents. A typical response to the
CHM command is:

CHM #4040
4040 04 -

6

Again, the minus sign is an in-command PAGE2 prompt and accepts the following
inputs:

 Return alone: Show next location

. Dot return: Exit CHM command

<new contents> Enter new memory contents

@<address> Show contents at new address

SAV <page>

The SAV command records the contents of the specified page to cassette using
Frequency Shift Keying (FSK), at about eighty characters per second. A header is
first recorded to make start identification easier for the load process. The size of the
program is determined automatically by finding the NIBL end-of-program termination.
The I/O indicator LED is illuminated during program save.

LOD <page>

The LOD command loads a program from cassette. The I/O indicator LED is
illuminated when the header of a saved program is detected. The size of a program
is recorded during save, and this is used on load to determine whether the program
will fit into the chosen page. The LOD command terminates before loading
commences, if the proposed cassette file is too large for the selected page. This can
occur when a very large program is saved from Page 3, 4, 5, 6 or 7, and then
subsequently re-loaded to Page 1.

PRN <page>

The PRN command lists the selected page at the auxiliary serial port. The listing
format is identical to the NIBL LIST command. The expectation is that a printer is
connected to the auxiliary port, thereby generating hardcopy. The auxiliary serial port
is hard coded for 1200 Baud, 8 data bits, no parity and one stop bit. Hardware flow
control is implemented.

ASM <page>

The ASM command assembles SC/MP machine mnemonics in the NIBL program file
on the selected page. This is a very simple and minimal assembler whose
statements and features are described in the next section.

7

Error messages

Message Meaning

?WHAT? Command not recognised

?SYNTX Syntax error

?EMPTY Specified page is empty

?PAGNO Specified page is invalid

?ABORT User has aborted command

?BADCS Loaded cassette file has bad checksum

?BADSZ Loaded cassette file too big for page

?OVFLO Number argument exceeds 16 bits

?OPCOD Unrecognised opcode

?NOLBL Specified label or constant not found

?JMPSZ Jump distance too big

When running the assembler, the errant line is identified by the error message, e.g.:

*ASM 4
PASS 1:
?SYNTX IN 230
*

8

Chapter 4 Assembler

The PAGE2 assembler is intended to complement the NIBL language by adding
integrated binary code generation. Assembler mnemonics, along with a few
assembler directives, permit the generation of this binary in the memory following a
NIBL program. The assembler does not support symbolic constants. Instead, line
numbers serve as both constants and labels. The PAGE2 assembler has only four
directives:

Directive Function Example

REM Turns line into a comment REM LOAD POINTER 1

EQU Defines a constant 30 EQU 26

SPC Reserve space 20 SPC 80

BYT Generates values in the binary 40 BYT 1,2,3,"STRING"

The EQU directive allows commonly referenced constants to be associated with a
line number. In the example above, for example, a constant defined as 26 could be
referenced using '$30'. The SPC directive reserves a block of memory of up to 255
bytes in size. This is useful for statements of the kind INPUT $N which need some
memory to store a user response.

Assembler operands

The PAGE2 assembler has no expression capability. This means that operands are
strictly limited to simple decimal or hexadecimal values (the latter preceded by a
hash '#'). The operand field is parsed by first looking for the following prefixes:

Prefix Effect

- Sign change

$ Symbolic constant look-up

H High byte of symbolic constant

L Low byte of symbolic constant

@ Adjusts opcode for auto-indexed operation

Parsing concludes with a search for one of the following postfixes:

9

Postfix Effect

(0)

(1)

(2)

(3)

Adjusts opcode for required pointer

This minimal parser generates SC/MP binary correctly but can be confused by
incongruous combinations e.g.:

50 LDI -3(1)

... which actually generates:

50 LD @-3(1)

Note that offset calculations for jump instructions are correctly calculated, provided
the targets are of the form $<line number>.

Comments

The REM directive is recognised for the purpose of turning an entire line into a
comment. Comments can also be added after directives, opcodes and operands,
provided all expected fields are present. Failing this, the assembler might attempt to
parse the comment field.

IMPORTANT

The assembler needs memory in which to store a symbol table. Page 1 is used for
this purpose, and any program previously resident in Page 1 will be destroyed by
use of the assembler. On completion of assembly, Page 1 will be found to hold a
single NIBL program line:

1 REM SYMTAB

Development life cycle

The combined NIBL/assembler development lifecycle is as follows:

A program combining NIBL statements and assembler mnemonics is entered on the
desired page. NIBL statements appear first. Assembler mnemonics follow after the
NIBL statements, the start of these being identified by a line beginning 'ASM', e.g.

10 REM PROGRAM
20 FOR N=1 TO 10

10

30 LINK TOP
40 NEXT N
50 END
60 ASM
70 CSA
80 XRI #02
90 CAS
100 XPPC P3

The assembler locates the 'ASM' statement in order to determine the beginning of
the assembler code. Executable instructions are automatically written to the free
memory immediately following the program text.

There are two important issues to keep in mind: Firstly, ANY change to the textual
part of the program (i.e. NIBL or assembler) may corrupt executable instructions. If
any edits are performed, then the assembler must be re-run to regenerate the
executable binary. Secondly, loading a program from tape will require that the
assembler be run if the loaded program contains assembler code.

Access to executable code should use NIBL statements of the format LINK(TOP+N).
Multiple subroutines can be called this way, provided the executable code begins
with a table of JMP instructions to the routines provided. Parameters should be
passed and returned using NIBL variables, which are at convenient offsets from
SC/MP pointer 2.

11

Chapter 5 Hardware

A hardware platform for testing the PAGE2 system was constructed which employs a
PIC emulation of a 4MHz SC/MP chip. This emulation is 'cycle perfect' and so
accurately approximates a real SC/MP chip in terms of instruction execution time.

The computer has an integrated cassette transport . A relay determines the
play/record state, and is energised by a press button. The relay is de-energised on
cassette ejection so as to prevent inadvertent over-recording.

The computer has a single 8k byte EPROM which maps to the SC/MP address
space as follows:

EPROM range SC/MP range

0000 - 0FFF 0000 - 0FFF

1000 - 1FFF 2000 - 2FFF

Consequently, the lower half of the EPROM holds the NIBL interpreter (Page 0)
while the upper half holds the PAGE2 system (Page 2).

The computer has two serial ports: one for the console and another 'auxiliary' port for
a printer or external device. Standard 5V logic levels are used for these ports since,
in hobby application, serial leads rarely extend beyond the same desk. Accordingly,
both serial ports are wired to non-standard connectors to prevent mating with
devices using RS232 voltage levels. These connectors feature a pin carrying the 5V
power rail, plus a master reset signal.

The SC/MP address space is divided as follows:

SC/MP Device

0000 - 0FFF EPROM

1000 - 1FFF RAM

2000 - 2FFF EPROM

3000 - 7FFF RAM

8000 - 80FF Expansion

No interrupts are supported by the computer.

12

(A7)

(A6)

(A5)

(A4)

(A3)

(A2)

(A1)

(A0)

RC7

RC6

RC5

RC4

RC3

RC2

RC1

RC0

26

25

24

23

18

17

16

15

(D7)

(D6)

(D5)

(D4)

(D3)

(D2)

(D1)

(D0)

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

40

39

38

37

36

35

34

33

(A14)

(A13)

(A12)

(A11)

(A10)

(A9)

(A8)

RD6

RD5

RD4

RD3

RD2

RD1

RD0

29

28

27

22

21

20

19

A7

A6

A5

A4

A3

A2

A1

A0

3

4

5

6

7

8

9

10

IO7

IO6

IO5

IO4

IO3

IO2

IO1

IO0

19

18

17

16

15

13

12

11

A14

A13

A12

A11

A10

A9

A8

1

26

2

23

21

24

25

Vcc

Vss

/CS

/OE

/W E

28

14

20

22

27

62256

3

4

5

6

7

8

9

10

2

23

21

24

25

19

18

17

16

15

13

12

11

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

A7

A6

A5

A4

A3

A2

A1

A0

A12

A11

A10

A9

A8

2764

PIC16F877-20/P

Vcc

Vss

Vcc

Vss

11

12

Vcc 32

Vss 31

/G

/E

RE2

RE1

(NW DS)

(NRDS)

A7

A6

A5

A4

A3

A2

A1

A0

D7

D6

D5

D4

D3

D2

D1

D0

NRDS

NW DS

RE0

RA5

RA4

RA3

RA2

RA1

RA0

GND

GND

OSC1

OSC2

/MCLR 1

8

7

6

5

4

3

2

9

10

13

14

(F0)

(F1)

(F2)

(SOUT)

(SA)

(SB)

(SIN)

RD7 30 (A15)

EXPANSION

28

14

20

22

(A13)

CASIN

CASOUT

100n

22p

22p

100n

100n

20MHz

/IOREQ

AUXOUT

CPURST

CONOUT

LED

AUXIN

CONIN

All 10k

All 10n

(A12)

(A14)

1/E

1A0

1A1

2/E

2A0

2A12/Y2

2/Y1

2/Y3

2/Y0

1/Y2

1/Y1

1/Y3

1/Y0

Vcc

GND

13

14

15

3

2

1

16

8

9

10

11

12

7

6

5

4

100n

GND

GND

+5V

+5V

All 10k

/P

Vpp 1

27

74HC139

All BC337

13

9V
15VA

L

N

~

~

+

-

W02M

240V

4700µ
63V

+

On / Off

1k

Green

1k

Yellow

Mech. switch

1k

Red

Record

LED

+

RECPWR

7805
1

2

3

100n 1µ

4k7

1N4148
Relay

BC337

1

2

3

4

5

1

2

3

4

5

Console

Auxiliary

5 way DIN socket

5 way DIN socket

CPURST

AUXIN

AUXOUT

CONIN

CONOUT

All 1N5711

(reserved)

Reset

14

RECPWR

Relay

330R

47µ 10µ
+ + Erase

Rec/
play

360k

10n

10k 360k

47p

1µ
+

10k

20k 100k

100p

470n

10k

10k

1M 2k2

3k3

100µ
+

CASIN

10k

330R

+ CASOUT

1µ

+

-

+

-

+

-

+

-
LM324N

a b c

d

10µ
+

2k2

3k3

47µ
+

A terminal was constructed for use with the SC/MP computer. This is based on a PIC
microcontroller, and displays a 16x25 text display on a 625 line monitor. The terminal
scans a 40 key keyboard. Most people will of course prefer to use a terminal
emulation program running on a modern computer. The terminal communicates
using 5V serial at 1200 Baud.

RB1

RB2

RB3

RB4

RB5

RB6

RB7

VSS

VSS

RB0
22

27

28

19

8

21

23

24

25

26

VDD
20

PIC16F876-20/SP

/MCLR
1

RA4
6

Keyboard matrix

RC1

RC2

RA0

RA1

RA2

RA3

RC0
12

5

11

13

2

3

4

10k
Shift

1 ! 2 " 3 # 4 $ 5 %

Q W E R

T [

A S D DLTE F G

 Z \ X , C . V <

6 ^ 7 & 8 * 9 (0)

Y]

U = I - O _ P +

H : J ; K ' L @ NEW
LINE

B > N ? M / SPACE BACK
SPACE

3

2

100n

20MHz

22p

22p
OSC1

OSC2
10

9

VIDEO
OUT 910R

390R

RC3
14

RA5
7

RC4
15

10µ
+

Both 10k

1N5711

Both 10n

1µ
+

LT700

8R
RC5

RC6

RC7
18

16

17

1

4

5

5 pin DIN plug

15

Chapter 6 Photo

16

Chapter 7 Software

A number of source files are needed to construct the SC/MP computer:

File Purpose
NIBL1200.asm The NIBL source code *
PAGE2.asm The PAGE2 system source code
SCMPemu.asm The PIC SC/MP emulator source code
Terminal.asm The 1200 Baud terminal source code

* This source file is essentially the original NIBL source code, modified to use a 1200
Baud console. I would be seriously remiss if I did not acknowledge the valuable work
undertaken by Roger Marin to scan the original NIBL source using OCR methods,
and his painstaking correction of the scan to arrive at the exact original source code.
I and others in the SC/MP enthusiast community are indebted to Roger for all his
hard work.

I should also mention the assembler used to prepare the PAGE2 system. This is the
remarkable 'AS' assembler created by Alfred Arnold and his team:

http://john.ccac.rwth-aachen.de:8000/as/

17

Chapter 8 Example program

The PAGE2 assembler was tested on a simple routine, which takes a string input
from the user, and then sends it to the auxiliary (printer) port. The program was
entered into page 3.

10 REM PRINT STRING
20 INPUT $TOP
30 LINK (TOP+80)
40 END
1000 ASM
1010 EQU #2EEA ; PUTAUX-1 IN PAGE 2
1020 SPC 80
1030 LDI L$1010
1040 XPAL 3
1050 ST 0(2)
1060 LDI H$1010
1070 XPAH 3
1080 ST 1(2)
1090 LDI L$1020
1100 XPAL 1
1110 LDI H$1020
1120 XPAH 1
1130 LD 0(1)
1140 XPPC 3
1150 LD @1(1)
1160 XRI 13
1170 JNZ $1130
1180 LD 0(2)
1190 XPAL 3
1200 LD 1(2)
1210 XPAH 3
1220 XPPC 3

